<pre>*this is : *Multicol associati the data, the data : *it gener predictor other * print d</pre>	ons among the dep and if present is may not be reliab ally occurs when variables. AKA of ata; t data=tmpl.cars	exampl ate of endent n the d le there a ne pred (obs=5)	very var: ata re l icto ;	iables. the stanigh co. or varia	It is atisti rrelat able c	orrelations or inte a type of disturba cal inferences made ions between two or an be used to predi	nce in about more
		Obs	mpg	cyl	eng	wgt	
		1 2 3 4 5	18 15 18 16 17	8 8 8 8	307 350 318 304 302	3504 3693 3436 3433 3449	
	data attributes; ents data=tmpl.ca	rs;	ті	ne SAS Sy	stem	16:53 Tuesday, Jar	uuary 15,
2013 1		т	he C(ONTENTS P	rocedur	٩	
	Data Set Name Member Type Engine Created Last Modified Protection Data Set Type Label Data Representation Encoding	TMP1.CAI DATA V9 11/14/20 11/14/20	RS 010 - 010 - _32	11:28:36 11:28:36 stern (Wi		Observations Variables Indexes Observation Length Deleted Observations Compressed Sorted	392 4 0 32 0 NO NO
		Engine/H	Host	Dependen	t Infor	mation	
	Data Set Page Size Number of Data Set Pages First Data Page Max Obs per Page Obs in First Data Page Number of Data Set Repairs Filename			4096 4 1 126 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nxnguy0	1\Desktop\cars.sas7bdat	

Release Created

Host Created

C:\Users\nxnguy01\Desktop\cars.sas7bdat 9.0202M3 W32_VSPRO

Alphabetic List of Variables and Attributes

#	Variable	Туре	Len	Label
2	cyl	Num	8	number of cylinders
3	eng	Num	8	engine displacement in cubic inches
1	mpg	Num	8	miles per gallon
4	wgt	Num	8	vehicle weight in pounds

* estimate regression using proc reg; *here the dependent variable is mpg, and the independent variables are: cyl, eng, and wgt *this regression will give us one explanatory variable cyl. Theres an inverse relation between number of cylinders and miles per gallon. *P-value for cyl is <.001 and less than 0.05 so it is statistically significant *60.47% of variability is explained by the model

options nolabel;

proc reg data=tmpl.cars; model mpg = cyl; run; quit;

The SAS System 16:53 Tuesday, January 15, 2019 3

The REG Procedure Model: MODEL1 Dependent Variable: mpg

Number	of	Observations	Read	392
Number	of	Observations	Used	392

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	14403	14403	596.56	<.0001
Error	390	9415.91039	24.14336		
Corrected Total	391	23819			

Root MSE	4.91359	R-Square	0.6047
Dependent Mean	23.44592	Adj R-Sq	0.6037
Coeff Var	20.95712		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	42.91551	0.83487	51.40	<.0001
cyl	1	-3.55808	0.14568	-24.42	<.0001

```
* estimate regression using proc reg;
*dependent variable is still mpg. Engine and weight of the vehicle were added
to the cyl independent variable for the equation
*the r-square went up nearly 10 percentage points. (From 0.6047 to 0.6993)
As you introduced other variables cyl is no longer statistically significant
*the second result eng size isn't significant either (0.1253)
*wqt is statistically significant with the p-value <.0001
*things on the right hand side of the equation are highly correlated. This is
multicollinearlity.
*evidence of multicollinearlity, r-square went up, robustness (cy1) went away
and just one independent variable (wgt) is shining through
*cyl and eng are tested simultaneously here. They both equal 0 here. The
results tell us separately they aren't statistically significant, but
together they are because of multicolinearlity.
*all 3 of these things are measuring basically the same thing (cy1, eng, wgt)
do an f-test on them. If you fail to reject the null=0 then you have good
reason to boot them out.
options nolabel;
proc reg data=tmp1.cars;
model mpg = cyl eng wgt;
testcol: test cyl=0, eng=0;
run;
quit;
The SAS System
                  16:53 Tuesday, January 15, 2019 4
                                  The REG Procedure
```

Model: MODEL1 Dependent Variable: mpg

Number of	Observations	Read	392
Number of	Observations	Used	392

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	3	16656	5552.14810	300.76	<.0001
Error	388	7162.54916	18.46018		
Corrected Total	391	23819			

Root MSE	4.29653	R-Square	0.6993
Dependent Mean	23.44592	Adj R-Sq	0.6970
Coeff Var	18.32528		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	44.37096	1.48069	29.97	<.0001
cyl	1	-0.26780	0.41307	-0.65	0.5172
eng	1	-0.01267	0.00825	-1.54	0.1253
wgt	1	-0.00571	0.00071392	-8.00	<.0001

*the results tell us that there is multicolinearlity
*reject the <u>null hypothesis</u> that those coefficients are equal to 0, you have
multicollinearlity
*do a correlation matrix
*options nolabel will get rid of your labels if you don't want to see them
*the f-test says they are statistically significant. You don't reject the
null that they are statistically significant, you reject the null that the
values are equal to 0
*with this you go to infinity for the <u>f distribution</u> so your critical value
would be 3.00. The <u>numerator 2</u> in the top column for DF, once you get past
120 the value will be 3.00 because the <u>denominator is 388</u>
*if looking at t-critical values use 0.975 for a 95% confidence interval.
0.25 in one tail and 0.25 in the other.
*in the F-distribution it say 95th percentile at the top so its for the 0.05.
*

The SAS System

16:53 Tuesday, January 15, 2019 5

The REG Procedure Model: MODEL1

Test testcol Results for Dependent Variable mpg

		Mean		
Source	DF	Square	F Value	Pr > F
Numerator	2	79.34228	4.30	0.0142
Denominator	388	18.46018		

* obtain correlation matrix;

*you want to see if they are correlated or not *they are super highly correlated, because they are basically measuring the same thing *big heavy cars have a lot of engines with heavy cylinders *these are saying that the raw Pearson correlation coefficients are correlated. *Eng is <.001 under the cyl column, *wgt is <.0001 under cyl column, *cyl is <.0001 under eng column, *wgt is <.0001 under eng column, *cyl is <.0001 under eng column, *eng is <.0001 under wgt column *tot is <.0001 under wgt column *tot is <.0001 under wgt column *tot is <.0001 under wgt column</pre>

options nolabel; proc corr data=tmpl.cars; var cyl eng wgt; run; quit;

The SAS System 16:53 Tuesday, January 15, 2019 6

The CORR Procedure

3 Variables: cyl eng wgt

Simple Statistics

Variable	Ν	Mean	Std Dev	Sum	Minimum	Maximum
cyl	392	5.47194	1.70578	2145	3.00000	8.00000
eng	392	194.41199	104.64400	76210	68.00000	455.00000
wgt	392	2978	849.40256	1167213	1613	5140

Pearson Correlation Coefficients, N = 392 Prob > |r| under HO: Rho=0

	cyl	eng	wgt
cyl	1.00000	0.95082 <.0001	0.89753 <.0001
eng	0.95082 <.0001	1.00000	0.93299 <.0001
wgt	0.89753 <.0001	0.93299 <.0001	1.00000

* estimate regression using proc reg with vif option;

*vif=variance inflation factors or variance inflation. The VIF detects multicollinearity in regression analysis. The VIF estimates how much the variance of a regression coefficient is inflated due to multicollinearity in the model. VIF=1/ $(1-R_i^2)$ *if above the value of 10 you've got trouble. *if VIF is above 10 you have multicollinearlity, which its above 10 on cy1 (10.51551), and eng (15.78646) so kick those out. Keep wgt (7.7882) because it is less than 10 * [in the term project make sure to do vif in model specification phase, just put /vif to do it]. *throw it out of the model if it's over 10 because it is causing the multicolinearlity. Throw out the cyl and eng since both are over 10 *when doing a cross-sectional regression is when you check the vif *depended variable cyl as a function of eng and wgt. Then switch it, eng is the dependent variable cyl and weight are the function; and then try it for weight.

options nolabel;

proc reg data=tmp1.cars; model mpg = cyl eng wgt / vif; run; quit;

16:53 Tuesday, January 15, 2019 7 The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: mpg

Number	of	Observations	Read	392
Number	of	Observations	Used	392

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	16656	5552.14810	300.76	<.0001
Error	388	7162.54916	18.46018		
Corrected Total	391	23819			

Root MSE 4.29653 R-Square 0.6993 Dependent Mean 23.44592 Adj R-Sq Coeff Var 18.32528

Parameter Estimates

0.6970

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	1	44.37096	1.48069	29.97	<.0001	0
cyl	1	-0.26780	0.41307	-0.65	0.5172	10.51551

eng	1	-0.01267	0.00825	-1.54	0.1253	15.78646
wgt	1	-0.00571	0.00071392	-8.00	<.0001	7.78872

* estimate regression using proc reg with collin option; *condition index will indicate that the inversion of the matrix is numerically unstable. Computed by finding the square root of the max eigenvalue/min eigenvalue. *the /Collin is another set of metrics to look it. It is the condition index. 10-30 is moderate, above 30 it is severe and means that multicollinearity may exist. If between 0-10 then you don't have much of a problem. On the chart below. Advantage of the condition index is it shows which variables are causing the problem *The "Numbers" column are the order of the parmaters- intercept, cyl, eng, wgt *The diagnostics would indicate to drop 2 of the 3 explanatory variables, as did the VIF diagnostics. They do not have to recommend dropping the same two as that doesn't matter since all 3 explanatory variables measures the same thing *1.if we find multicolinearlity then the first thing to do is collect more data. You probability have too small of a data set to identify the right hand side of your line. More data will introduce more heterogeneity to your data. *more data helps mitigate this problem by definition, better opportunity to break the multicolinearlity *2.you could also re-specify the model and abandon the 2 problematic variables and keep wgt. *the condition index corroborated what we found because the value is so high *3.you can also use factor analysis. It allows you to take 3 variables like cyl, eng, wgt and collapse all 3 of those measures into one measure and use it as the explanatory variable. It reduces dimensionality of your data. Its basically a weighted average of the 3 variables. Use a data reduction technique here. It says bigger cars with bigger engines that are heavier have lower mpg. Lighter cars with smaller engines have higher mpg. *4. Use another technique like neural networks, instead of using regression options nolabel; proc reg data=tmp1.cars; model mpg = cyl eng wgt / collin; run; quit; 16:53 Tuesday, January 15, 2019 8 The SAS System The REG Procedure Model: MODEL1 Dependent Variable: mpg Number of Observations Read 392 Number of Observations Used 392 Analysis of Variance Sum of Mean DF Pr > FSource Squares Square F Value

Model	3	16656	5552.14810	300.76	<.0001
Error	388	7162.54916	18.46018		
Corrected Total	391	23819			

Root MSE	4.29653	R-Square	0.6993
Dependent Mean	23.44592	Adj R-Sq	0.6970
Coeff Var	18.32528		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	44.37096	1.48069	29.97	<.0001
cyl	1	-0.26780	0.41307	-0.65	0.5172
eng	1	-0.01267	0.00825	-1.54	0.1253
wgt	1	-0.00571	0.00071392	-8.00	<.0001

Collinearity Diagnostics

		Condition		Proportion c	of Variation	
Number wgt	Eigenvalue	Index	Intercept	cyl	eng	
1 0.00064110	3.86663	1.00000	0.00134	0.00055885	0.00089840	
2 0.00000188	0.12033	5.66860	0.09914	0.00045810	0.05169	
3 0,68206	0.00829	21.60042	0.02754	0.40752	0.00185	
4 0.31730	0.00475	28.52804	0.87198	0.59147	0.94556	