```
* Dr. Steven S. Vickner;
* MSBA 635 - Data Analytics II;
Heteroskedasticity example
* print data;
proc print data=tmp1.food (obs=5);
run;
                      16:59 Tuesday, January 15, 2019 1
 The SAS System
                                  0bs
                                        food_exp
                                                   income
                                        115.22
                                                     3.69
                                    1
                                                     4.39
                                    2
                                        135.98
                                    3
                                         119.34
                                                     4.75
                                    4
                                        114.96
                                                     6.03
                                    5
                                         187.05
                                                    12.47
* display data attributes;
proc contents data=tmp1.food;
run;
The SAS System
                    16:59 Tuesday, January 15, 2019 2
                                    The CONTENTS Procedure
           Data Set Name
                              TMP1.FOOD
                                                          Observations
           Member Type
                                                          Variables
                              DATA
           Er
           Cr
```

Engine	V9	Indexes	0
Created	12/21/2018 08:29:04	Observation Length	16
Last Modified	12/21/2018 08:29:04	Deleted Observations	0
Protection		Compressed	NO
Data Set Type		Sorted	YES
Label			
Data Representation	WINDOWS_64		
Encoding	wlatin1 Western (Windows)		

40

2

Engine/Host Dependent Information

Data Set Page Size	4096
Number of Data Set Pages	1
First Data Page	1
Max Obs per Page	252
Obs in First Data Page	40
Number of Data Set Repairs	0
Extend0bsCounter	YES
Filename	C:\Users\nxnguyO1\Desktop\food.sas7bdat
Release Created	9.0401M3
Host Created	X64_8PRO

Alphabetic List of Variables and Attributes

Variable Type Len Label

1	food_exp	Num	8	household food expenditure per week
2	income	Num	8	weekly household income

```
Num
          8
               weekly household income
```

```
Sort Information
```

Sortedby		income
Validated		YES
Character	Set	ANSI

* sort data;

*sorts from lowest to highest amount of income, the explanatory variable is organized from low to high

proc sort data=tmp1.food; by income; run;

* estimate regression using proc reg;

*model statement model exp are a function of income *output line out is foodout. *r stands for residual *p=predicted value *the income is statistically significant <.0001 is less than 0.05 at the 99% confidence level and 99% confidence level. *as income increases by 1 unit food increases by 10.20964 units *positive intercept of 83.41600 *the fit statistics: root MSE, 38.50% of variability is explained by the model

options nolabel;

proc reg data=tmp1.food; model food exp = income; output out=foodout r=ehat p=yhat; run; quit;

16:59 Tuesday, January 15, 2019 3 The SAS System

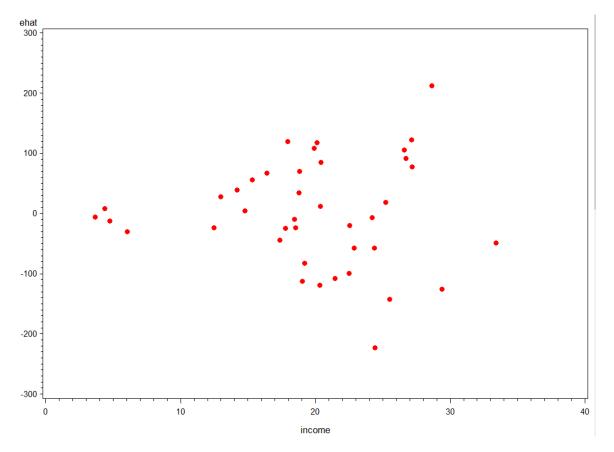
The REG Procedure Model: MODEL1 Dependent Variable: food exp

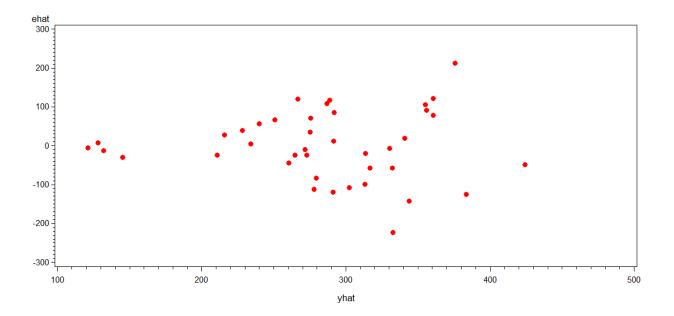
Number	of	Observations	Read	40
Number	of	Observations	Used	40

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	190627	190627	23.79	<.0001
Error	38	304505	8013.29410		
Corrected Total	39	495132			

Root MSE	89.51700	R-Square	0.3850
Dependent Mean	283.57350	Adj R-Sq	0.3688
Coeff Var	31.56748		


Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	83.41600	43.41016	1.92	0.0622
income	1	10.20964	2.09326	4.88	<.0001


* produce scatterplot;

*you have syntax here for a scatterplot, if you want to use it just change the variables *the first plot, the empirical residuals, those are your errors. They add to zero because the sum to zero * Heteroskedasticity is about testing if the variables are constant or not. *ehat is actual - expected for all 40 observations. *plot those residuals by expenditures *if you see cone shape then you have constant violation of error in your model *you need some strategy to mitigate it *theres a bit of a funnel/cone shape in the data. Go from household of less income to more income there is more diversion from actual - expected *if you have high income you spend a lot of money on food, if you don't you spend less on food *our horizontal axis is our explanatory variable. Lower income has less dispersion of those empirical residuals (which are actuals - expected) *you are not predicting well at higher incomes, there is a real wide spread here

symbol1 value=dot color=red; proc gplot data=work.foodout; plot ehat*income=1 / overlay; plot ehat*yhat=1 / overlay; run;

```
quit;
```



```
* construct new data sets for Goldfeld-Quandt test;
*set that permanent data set, if the first observations are >20.
*data is ordered by income, first is the smallest 20, second is the largest
20
data gq1;
set tmp1.food;
if _n_ le 20;
run;
data gq2;
set tmp1.food;
if _n_ gt 20;
run;
* estimate regression using proc reg on gql data;
options nolabel;
proc reg data=work.gq1;
model food exp = income;
run;
quit;
The SAS System
                     16:59 Tuesday, January 15, 2019 4
                                      The REG Procedure
                                        Model: MODEL1
                                 Dependent Variable: food exp
                            Number of Observations Read
                                                              20
                            Number of Observations Used
                                                              20
                                      Analysis of Variance
                                            Sum of
                                                            Mean
                                                                             Pr > F
           Source
                                  DF
                                           Squares
                                                          Square
                                                                   F Value
           Model
                                   1
                                             75194
                                                           75194
                                                                     21.03
                                                                             0.0002
           Error
                                  18
                                             64346
                                                      3574.77175
           Corrected Total
                                  19
                                            139540
                       Root MSE
                                          59.78939
                                                     R-Square
                                                                  0.5389
                                         240.18300
                                                                 0.5133
                       Dependent Mean
                                                     Adj R-Sq
                       Coeff Var
                                          24.89327
                                      Parameter Estimates
                                   Parameter
                                                  Standard
               Variable
                           DF
                                    Estimate
                                                    Error
                                                             t Value
                                                                       Pr > |t|
                                    72,96174
                                                 38.83435
                                                               1.88
                                                                         0.0766
               Intercept
                            1
                                    11.50038
                                                                         0.0002
               income
                            1
                                                  2.50751
                                                               4.59
```

* estimate regression using proc reg on gq2 data;

*run a regression on the second one. Slope is much larger in value but it has slipped in overall significance *this is only significant at the alpha 0.10 level because it is 0.0707 *we see in this particular regression that higher income individuals actual expected was spread out *

options nolabel;

```
proc reg data=work.gq2;
model food_exp = income;
run;
quit;
```

The SAS System 16:59 Tuesday, January 15, 2019 5

The REG Procedure Model: MODEL1 Dependent Variable: food_exp

Number	of	Observations	Read	20
Number	of	Observations	Used	20

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	47688	47688	3.69	0.0707
Error	18	232595	12922		
Corrected Total	19	280282			

Root MSE	113.67465	R-Square	0.1701
Dependent Mean	326.96400	Adj R-Sq	0.1240
Coeff Var	34.76672		

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-24.91465	184.92486	-0.13	0.8943
income	1	14.26400	7.42509	1.92	0.0707

```
* this approach always works;
```

```
*to assemble the goldfield quant test,
*20 observations in first observation, 20 observations in second observation
*you want sigma 1 and sigma 2
*in your first output sigma 1=3574.77175, it is the Mean Square Error. Used
in the G-Q test
*in second regression do the same. It is 12922 for the Mean Square Error
here.
*take the 3574.77175/12922. This is the Goldfeld Quant test statistic
*(n2-k) is the numerator degree of freedom
*(n1-k) is the denominator degree of freedom
*this will give you the critical value and give you the p-value
*20-2=18, 18 is the degree of freedom
*k=number of variables
data gqtest;
n1 = 20;
n2 = 20;
k = 2;
sig2 1 = 3574.77175;
sig2 2 = 12922;
qq = sig2 2/sig2 1;
fc = finv(0.95, (n2 - k), (n1 - k));
pval gq = 1-probf(gq, (n2 - k), (n1 - k));
run;
* print data;
*the goldfield quant=3.61478
*in the f-distribution table the f-critical is row 20 column about 20 =
2.2172, you get close to it
*3.61478>2.21720 so we reject the null hypothesis
*assume mean is 0, reject the null hypothesis that the residuals have
consistantancy
*the variance of the residuals is not constant
*heterosketisity means constant variance
proc print data=work.gqtest;
run;
```

Th	e SAS	System	l	16:59 Tuesday, January 15, 2019			019 6	
0bs	n1	n2	k	sig2_1	sig2_2	gq	fc	pval_gq
1	20	20	2	3574.77	12922	3.61478	2.21720	.004596285

```
* construct variable for Lagrange Multiplier test;
*ehat squared is ehat*ehat
*take each residual of actual - expected and square it
data lmtestdata;
set work.foodout;
ehat2 = ehat*ehat;
run;
* estimate regression using proc reg on lmtest data;
*now dependent variable is ehat2
options nolabel;
proc reg data=work.lmtestdata;
model ehat2 = income;
run;
quit;
 The SAS System
                       16:59 Tuesday, January 15, 2019 7
                                       The REG Procedure
                                        Model: MODEL1
                                   Dependent Variable: ehat2
                             Number of Observations Read
                                                               40
                             Number of Observations Used
                                                               40
                                      Analysis of Variance
                                            Sum of
                                                            Mean
           Source
                                  DF
                                           Squares
                                                          Square
                                                                    F Value
                                                                              Pr > F
           Model
                                   1
                                         851193272
                                                        851193272
                                                                      8.60
                                                                              0.0057
           Error
                                  38
                                         3759556169
                                                        98935689
           Corrected Total
                                  39
                                         4610749441
                       Root MSE
                                         9946.64208
                                                      R-Square
                                                                  0.1846
                       Dependent Mean
                                         7612.62940
                                                      Adj R-Sq
                                                                  0.1632
                       Coeff Var
                                         130.65974
                                      Parameter Estimates
                                   Parameter
                                                  Standard
               Variable
                            DF
                                    Estimate
                                                    Error
                                                             t Value
                                                                       Pr > |t|
                                 -5762.36984
                                                4823.50094
               Intercept
                            1
                                                               -1.19
                                                                         0.2396
               income
                             1
                                   682.23258
                                                232.59204
                                                                2.93
                                                                         0.0057
```

```
* this approach always works;
```

```
*this is the lagrange multiplier test
*here you are back to 40 observations
*you do it on the entire dataset
*the r squared=0.1846
*chisq=chi squared test statistic
*chiq critical is 0.95,
*degrees of freedom (s-1) is the parameters -1
*test whether the residuals are constant or not
data lmtest;
s = 2;
n = 40;
r2 = 0.1846;
chisq = n*r2;
csc = cinv(0.95, (s - 1));
pval chisq = 1-probchi(chisq, (s - 1));
run;
* print data;
*test statistical is greater than the critical value. Reject the null that
the variance is constant. The variance of the error terms is not constant
proc print data=work.lmtest;
run;
 The SAS System
               16:59 Tuesday, January 15, 2019 8
```

0bs	s	n	r2	chisq	CSC	pval_chisq
1	2	40	0.1846	7.384	3.84146	.006580665

* contruct variables for White test;

*create in this data step the same residual square, ehat*ehat *also create income squared, income*income

data wtestdata; set work.foodout; ehat2 = ehat*ehat; income2 = income*income; run;

* estimate regression using proc reg on wtest data;

*whites test models your dependent variable. Added in another term instead of having income just linear it is introduced as a quadratic *not a whole lot of interpretation *the r-square 0.1889

options nolabel; proc reg data=work.wtestdata; model ehat2 = income income2; run; quit;

The SAS System 16:59 Tuesday, January 15, 2019 9

The REG Procedure Model: MODEL1 Dependent Variable: ehat2

Number	of	Observations	Read	40
Number	of	Observations	Used	40

Analysis of Variance

	Sum of	Mean		
DF	Squares	Square	F Value	Pr > F
2	870864356	435432178	4.31	0.0208
37	3739885085	101077975		
39	4610749441			
	2 37	DF Squares 2 870864356 37 3739885085	DFSquaresSquare2870864356435432178373739885085101077975	DF Squares Square F Value 2 870864356 435432178 4.31 37 3739885085 101077975

Root MSE	10054	R-Square	0.1889
Dependent Mean	7612.62940	Adj R-Sq	0.1450
Coeff Var	132.06678		

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-2908.78281	8100.10876	-0.36	0.7216
income	1	291.74573	915.84618	0.32	0.7519
income2	1	11.16529	25.30953	0.44	0.6617

```
* this approach always works;
*you have 3 parameters, slope on income, slope on income squared
data wtest;
s = 3;
n = 40;
r2 = 0.1889;
chisq = n*r2;
csc = cinv(0.95, (s - 1));
pval chisq = 1-probchi(chisq, (s - 1));
run;
* print data;
*does same as lagrange multiplier test.
*chsq test stat=7.556, cisq critical =5.99146, reject null hypothesis. It is
non-constant
*0.022868 is less that 0.025 so it is significant
proc print data=work.wtest;
run;
                   16:59 Tuesday, January 15, 2019 10
The SAS System
                                                            pval
                   0bs
                             n
                                  r2
                                         chisq
                                                   csc
                                                            chisq
                         s
                    1
                        3
                            40
                                0.1889
                                          7.556
                                                 5.99146
                                                          0.022868
* construct variables for other model specifications to possibly eliminate
heteroskedasticity;
*look at the plots, ehats compared to predicted values, GQ test, lagrange
multiplier test, whites test
*null hypothesis is to reject heteroskedastcity, we have it in our data.
*think of heteroscedasticity in the following 5 ways
*1. Do a natural log transformation to dampen the variance, so log the
```

dependent and independent variable *2. Per capita transformation - Divide through by something to control for the relative size per unit

```
data newdata;
set work.foodout;
lfood_exp = log(food_exp);
lincome = log(income);
run;
```

* estimate regression using proc reg for other model specifications to possibly eliminate heteroscedasticity; *set of regressions to run *the first model is lin lin. Food expeditures linear, income linear. *there are 4 total models *1. Dependent variable here is food exp *2.lfood exp is the dependent variable, create the 2 graphs and run your 3 tests to see if there is multicolinearlity *3. Create 2 graphs and run 3 test *4. 4^{th} model, do lin lin. Know that this is what we all use. /white *are parameter estimates the same as the original parameter estimates from first regression? Yes, what's different is use the columns with the heteroscedasticity consistent column numbers instead. The income here is significant.* *the heteroscedasticity consistent columns are the errors *always do your graphs and always do your tests *fitted observations are your regression lines *heteroscedasticity is introduced through poor sampling design *you would do this because they are used in segmentation type analysis. *you'll have heteroscedasticity because you haven't segmented the market well *to build a better model take high income models out and build a low income model. Then build a separate model for high incomes options nolabel; proc reg data=work.newdata; model food exp = lincome; model lfood exp = income; model lfood exp = lincome; model food exp = income / white; run; quit; The SAS System 16:59 Tuesday, January 15, 2019 11 The REG Procedure Model: MODEL1 Dependent Variable: food exp Number of Observations Read 40 Number of Observations Used 40 Analysis of Variance Sum of Mean 9

Source	DF	Squares	Square	F Value	Pr > F
Model	1	176520	176520	21.05	<.0001
Error	38	318612	8384.53584		
Corrected Total	39	495132			
Root	MSE	91.56711	R-Square	0.3565	
Deper	ident Mean	283.57350	Adj R-Sq	0.3396	

Coeff Var 32.29043

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-97.18642	84.23744	-1.15	0.2558
lincome	1	132.16584	28.80461	4.59	<.0001

2019 12

The SAS System 16:59 Tuesday, January 15,

The REG Procedure Model: MODEL2 Dependent Variable: lfood_exp

Number	of	Observations	Read	40
Number	of	Observations	Used	40

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	2.93046	2.93046	27.27	<.0001
Error	38	4.08304	0.10745		
Corrected Total	39	7.01350			

Root MSE	0.32779	R-Square	0.4178
Dependent Mean	5.56502	Adj R-Sq	0.4025
Coeff Var	5.89024		

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	4.78024	0.15896	30.07	<.0001
income	1	0.04003	0.00767	5.22	<.0001

2019 13

The REG Procedure Model: MODEL3 Dependent Variable: lfood_exp

Number	of	Observations	Read	40
Number	of	Observations	Used	40

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	1 38 39	3.12262 3.89088 7.01350	3.12262 0.10239	30.50	<.0001

Root MSE	0.31999	R-Square	0.4452
Dependent Mean	5.56502	Adj R-Sq	0.4306
Coeff Var	5.74997		

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	3.96357	0.29437	13.46	<.0001
lincome	1	0.55588	0.10066	5.52	<.0001

The SAS System 16:59 Tuesday, January 15,

2019 14

The REG Procedure Model: MODEL4 Dependent Variable: food_exp

Number	of	Observations	Read	40
Number	of	Observations	Used	40

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	190627	190627	23.79	<.0001
Error	38	304505	8013.29410		
Corrected Total	39	495132			

Root MSE	89.51700	R-Square	0.3850
Dependent Mean	283.57350	Adj R-Sq	0.3688
Coeff Var	31.56748		

					Heteroscedasticity			
Consistent-		Parameter	Standard			Standard		
Variable t	DF	Estimate	Error	t Value	Pr > t	Error	t Value	Pr >
Intercept 0.0035	1	83.41600	43.41016	1.92	0.0622	26.76835	3.12	
income <.0001	1	10.20964	2.09326	4.88	<.0001	1.76327	5.79	