```
* MSBA 635 - Data Analytics II;
* print data;
proc print data=tmp1.case demand (obs=5);
                                          The SAS System
                                                               07:12 Thursday, January 10,
2019
     1
                              0bs
                                      q1
                                              p1
                                                     p2
                                                            income
                                     81.7
                                                             25088
                                1
                                             1.78
                                                    1.11
                                     56.9
                                2
                                             2.27
                                                    0.67
                                                             26561
                                     64.1
                                                    0.83
                                                             25510
                                3
                                             2.21
                                4
                                     65.4
                                             2.15
                                                    0.75
                                                             27158
                                     64.1
                                             2.26 1.06
                                                             27162
* display data attributes;
proc contents data=tmp1.case demand;
run;
                                          The SAS System
                                                               07:12 Thursday, January 10,
2019
      2
                                      The CONTENTS Procedure
                                                                           Observations
Data Set Name
                    TMP1.CASE_DEMAND
Member Type
                    DATA
                                                                           Variables
                                                                           Indexes
                    ۷9
Engine
Created
                    10/26/2018 12:40:35
                                                                           Observation Length
30
Last Modified
                    10/26/2018 12:40:35
                                                                           Deleted
Observations 0
Protection
                                                                           Compressed
Data Set Type
                                                                           Sorted
NO
Label
                    case_demand dataset written by Stat/Transfer
                    Ver. 14.1.1016.0801
Data Representation WINDOWS_64
                    wlatin1 Western (Windows)
Encoding
                                Engine/Host Dependent Information
                                        4096
```

Data Set Page Size 4090
Number of Data Set Pages 1
First Data Page 1
Max Obs per Page 135

Obs in First Data Page 29 Number of Data Set Repairs 0

Filename C:\Users\nxnguy01\Desktop\case_demand.sas7bdat

Release Created 9.0000M0 Host Created WIN

Alphabetic List of Variables and Attributes

#	Variable	Type	Len
4	income	Num	6
2	p1	Num	8
3	p2	Num	8
1	q1	Num	8

3. What is the mean of Q1?

56.327559

* obtain descriptive statistics;

proc univariate data=tmp1.case_demand; run;

The SAS System 07:12 Thursday, January 10,

2019 3

The UNIVARIATE Procedure Variable: q1

Moments

N	29	Sum Weights	29
Mean	56.3275862	Sum Observations	1633.5
Std Deviation	7.90677361	Variance	62.517069
Skewness	1.1334015	Kurtosis	2.30586893
Uncorrected SS	93761.59	Corrected SS	1750.47793
Coeff Variation	14.0371249	Std Error Mean	1.468251

Basic Statistical Measures

Location Variability

Mean	56.32759	Std Deviation	7.90677
Median	55.60000	Variance	62.51707
Mode	51.60000	Range	37.40000
		Interquartile Range	10.10000

Note: The mode displayed is the smallest of 3 modes with a count of 2.

Tests for Location: MuO=0

Test	- S	tatistic-	p Val	ue
Student's t	t	38.36373	Pr > t	<.0001
Sign	M	14.5	Pr >= M	<.0001
Signed Rank	S	217.5	Pr >= S	<.0001

Level	Quantile
100% Max	81.7
99%	81.7
95%	65.9
90%	65.4
75% Q3	61.7
50% Median	55.6
25% Q1	51.6
10%	46.8

5%	46.3
1%	44.3
0% Min	44.3

The SAS System 07:12 Thursday, January 10,

2019 4

The UNIVARIATE Procedure Variable: q1

Extreme Observations

Lowe	st	High	est
Value	0bs	Value	0bs
44.3	22	64.1	5
46.3	27	65.3	8
46.8	28	65.4	4
47.9	14	65.9	11
48.3	12	81.7	1

4. What is the mean of P1?

3.04586207

The	SAS Syste	m 07:12	Thursday.	Januarv	10.	2019	5

The UNIVARIATE Procedure Variable: p1

Moments

N	29	Sum Weights	29
Mean	3.04586207	Sum Observations	88.33
Std Deviation	0.62524576	Variance	0.39093227
Skewness	-0.2083987	Kurtosis	-1.1121355
Uncorrected SS	279.9871	Corrected SS	10.9461034
Coeff Variation	20.527711	Std Error Mean	0.11610522

Basic Statistical Measures

Location	Variabilitv
----------	-------------

Mean	3.045862	Std Deviation	0.62525
Median	3.110000	Variance	0.39093
Mode	3.110000	Range	2.21000
		Interquartile Range	1.09000

Note: The mode displayed is the smallest of 2 modes with a count of 2.

Tests for Location: Mu0=0

- S	tatistic-	p Val	ue
t	26.23364	Pr > t	<.0001
M	14.5	Pr >= M	<.0001
S	217.5	Pr >= S	<.0001
	t M	M 14.5	t 26.23364 Pr > t M 14.5 Pr >= M

Level	Quantile
100% Max	3.99
99%	3.99
95%	3.89
90%	3.86
75% Q3	3.61
50% Median	3.11
25% Q1	2.52
10%	2.21
5%	2.15
1%	1.78
0% Min	1.78

The UNIVARIATE Procedure Variable: p1

Extreme Observations

Lowe	st	High	est
Value	0bs	Value	0bs
1.78	1	3.72	24
2.15	4	3.81	26
2.21	3	3.86	27
2.26	5	3.89	29
2.27	2	3.99	28

5. What is the price elasticity of demand for Good 1?

-1.4641

Equation= ((change in Q1/change in P1)* mean of P1)/mean of Q1 = ((27.07630)*3.04)/56.32 = -1.4641 (Answer from #1 * answer from #4)/answer from #3

6. Is the demand for Good 1 elastic or inelastic at the sample means of the data? Elastic.

If I increase price then total revenue will fall. If you decrease price then total revenue will rise.

7. Hence, a 1 percent increase in P1 results in a

1.4641 percent decrease in Q1

10. What is the mean of P2?

1.236262

11. What is the cross price elasticity of demand of Good 1 given a change in the price of Good 2?

0.2685. A 1% increase in price of Good 2 leads to a 0.2685 increase in the demand of Good 1, they are substitutes by definition.

(change in Q1 for P2 * mean P2)/mean Q1 \rightarrow (12.23621*1.2363069)/56.32759 = **0.2685** See these questions: (#8 * #10)/#3

12. Are Goods 1 and 2 substitutes or complements?

Substitutes

The SAS System 07:12 Thursday, January 10,

2019 7

The UNIVARIATE Procedure Variable: p2

Moments

N	29	Sum Weights	29
Mean	1.2362069	Sum Observations	35.85
Std Deviation	0.29165064	Variance	0.0850601
Skewness	-0.0079007	Kurtosis	-0.7286338
Uncorrected SS	46.6997	Corrected SS	2.38168276
Coeff Variation	23.5923813	Std Error Mean	0.05415817

Basic Statistical Measures

Location	Variability
----------	-------------

Mean	1.236207	Std Deviation	0.29165
Median	1.180000	Variance	0.08506
Mode	1.100000	Range	1.06000
		Interquartile Range	0.32000

Note: The mode displayed is the smallest of 4 modes with a count of 2.

Tests for Location: Mu0=0

Test	-Sta	atistic-	p Val	.ue
Student's t	t 2	22.82586	Pr > t	<.0001
Sign	M	14.5	Pr >= M	<.0001
Signed Rank	S	217.5	Pr >= S	<.0001

Level	Quantile
100% Max	1.73
99%	1.73

95%	1.71
90%	1.69
75% Q3	1.41
50% Median	1.18
25% Q1	1.09
10%	0.83
5%	0.75
1%	0.67
0% Min	0.67

The SAS System 07:12 Thursday, January 10,

2019 8

The UNIVARIATE Procedure Variable: p2

Extreme Observations

Lowe	st	High	est
Value	0bs	Value	0bs
0.67	2	1.60	22
0.75	4	1.62	27
0.83	3	1.69	28
0.88	9	1.71	29
0.91	13	1.73	23

15. What is the mean of INCOME?

32291.75

The SAS System 07:12 Thursday, January 10, 2019 9

The UNIVARIATE Procedure Variable: income

Moments

N	29	Sum Weights	29
Mean	32291.7586	Sum Observations	936461
Std Deviation	4287.12722	Variance	18379459.8
Skewness	-0.0287253	Kurtosis	-1.2748177
Uncorrected SS	3.07546E10	Corrected SS	514624875
Coeff Variation	13.2762271	Std Error Mean	796.09954

Basic Statistical Measures

Location Variability

Mean	32291.76	Std Deviation	4287
Median	32408.00	Variance	18379460
Mode		Range	13735
		Interquartile Range	7306

Tests for Location: Mu0=0

Test	-Statistic-	p Value
Student's t Sign	t 40.56246 M 14.5	Pr > t <.0001 Pr >= M <.0001
Signed Rank	S 217.5	Pr >= S <.0001

Level	Quantile
100% Max	38823
99%	38823
95%	38411
90%	38361
75% Q3	36019
50% Median	32408
25% Q1	28713
10%	26561
5%	25510
1%	25088
0% Min	25088

The UNIVARIATE Procedure Variable: income

Extreme Observations

Lowest		Highest		
	Value	0bs	Value	0bs
	25088	1	37323	23
	25510	3	38054	25
	26561	2	38361	29
	27158	4	38411	27
	27162	5	38823	28

1. What is the change in Q1 given a change in P1?

(Its asking for the parameter estimate) -27.07630

2. Is it statistically significant at the 95% level?

Yes. It is significant if p-value < 0.05, the p-value = <.0001 at p1 Pr > |t|

8. What is the change in Q1 given a change in P2?

12.23621

9. Is it statistically significant at the 95% level?

Yes. The p-value is less than 0.05 and the t-value is greater than the t-critical

13. What is the change in Q1 given a change in INCOME?

0.00185

14. Is it statistically significant at the 95% level?

Yes

16. What is the income elasticity of demand for Good 1?

1.0605. (change in income * Mean of income)/ Mean of Q1 \rightarrow (.00185*32291.75)/56.32=1.0605

17. Is Good 1 a normal or inferior good?

Normal. If normal, what type? Luxury because it is greater than 1

18. What is the adjusted R²?

0.7882. How do we interpret it?

78.82% of variability in the dependent variable is explained by this model

```
* estimate regression using proc reg;
```

```
proc reg data=tmp1.case_demand;
model q1 = p1 p2 income;
run;
quit;
```

2019 11

The SAS System 07:12 Thursday, January 10,

The REG Procedure
Model: MODEL1
Dependent Variable: q1

Number of Observations Read 29 Number of Observations Used 29

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	1419.42200	473.14067	35.73	<.0001
Error	25	331.05593	13.24224		
Corrected Total	28	1750.47793			

 Root MSE
 3.63899
 R-Square
 0.8109

 Dependent Mean
 56.32759
 Adj R-Sq
 0.7882

 Coeff Var
 6.46040

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	64.08135	10.28625	6.23	<.0001
p1	1	-27.07630	5.26998	-5.14	<.0001
p2	1	12.23621	4.24148	2.88	0.0079
income	1	0.00185	0.00083135	2.22	0.0357

The OPTMODEL Procedure

Problem Summary

Objective Sense	Maximization
Objective Function	f
Objective Type	Quadratic
Number of Variables	1
Bounded Above	0
Bounded Below	1
Bounded Below and Above	0
Free	0
Fixed	0
Number of Constraints	0

Performance Information

Execution Mode Single-Machine Number of Threads 2

19. Given P2 = \$1.65 and INCOME = \$38000 what is the revenue-maximizing level of Q1? 78.305

```
* solve for revenue maximizing level of q1;

proc optmodel;
  var q1 >= 0;
  maximize f = (5.7789 - .0369*q1)*(q1);

  /* starting value for optimization */
  q1=50;
  solve with NLP;
  print q1;
quit;

The SAS System 07:12 Thursday, January 10,
2019 13
```

The OPTMODEL Procedure

Solution Summary

Solver	NLP
Algorithm	Interior Point
Objective Function	f
Solution Status	Optimal
Objective Value	226.25802988
Optimality Error	0
Infeasibility	0
Iterations	2
Presolve Time	0.00
Solution Time	0.06

q1

78.305

```
What is the corresponding level of P1 that maximizes revenue?
2.88926
* apologies for hardcoded parms and spaghetti code but this approach always
works;
data revenue;
set tmp1.case demand;
revmax p1=5.7789 - .0369*78.31;
run;
* print revenue maximizing pl;
proc print data=work.revenue (obs=1);
var revmax p1;
run;
quit;
                                       The SAS System
                                                          07:12 Thursday, January 10,
2019 14
                                             revmax_
                                       0bs
                                                р1
                                         1
                                             2.88926
* create revenue function from regression, let tc = 50 + 1.5q1, and graph the
profit function;
data proffuncdata;
do q1 = 0 to 150 by 5;
   profit = (5.7789 - .0369*q1)*(q1) - (50 + 1.5*q1);
   output;
end;
run;
symbol1 value=none interpol=join color=red;
proc gplot data=work.proffuncdata;
plot profit*q1=1;
run;
quit;
                                       The SAS System
                                                          07:12 Thursday, January 10,
2019 15
                                   The OPTMODEL Procedure
                                      Problem Summary
                                                   Maximization
                           Objective Sense
                           Objective Function
                                                      Quadratic
                           Objective Type
                           Number of Variables
                                                             1
                           Bounded Above
                                                             0
```

Bounded Below

Bounded Below and Above

1

Free	0
Fixed	0
Number of Constraints	0

20. Given P2 = \$1.65, INCOME = \$38000 and TC=50+1.5Q1 (i.e., a total cost function), what is the profit-maximizing level of Q1?

57.98

Performance Information

```
Execution Mode Single-Machine
Number of Threads 2

* solve for profit maximizing level of q1 where tc = 50 + 1.5q1;

proc optmodel;
  var q1 >= 0;
  maximize f = (5.7789 - .0369*q1)*(q1) - (50 + 1.5*q1);

  /* starting value for optimization */
  q1=50;
  solve with NLP;
  print q1;
quit;

The SAS System 07:12 Thursday, January 10,
2019 16
```

The OPTMODEL Procedure

Solution Summary

Solver NLP Algorithm Interior Point Objective Function Solution Status Optimal 74.044615244 Objective Value Optimality Error 0 Infeasibility 0 Iterations 2 Presolve Time 0.00 Solution Time 0.01

q1

What is the corresponding level of P1 that maximizes profit?

```
3.63944
* apologies for hardcoded parms and spaghetti code but this approach always
works;
data profit;
set tmp1.case demand;
profitmax p1=\overline{5.7789} - .0369*57.98;
run;
* print profit maximizing p1;
proc print data=work.profit (obs=1);
var profitmax p1;
run;
quit;
                                       The SAS System
                                                          07:12 Thursday, January 10,
2019 17
                                           profitmax_
```

21. What is the price elasticity of demand for Good 1 evaluated at the solution in question 20? Show that the absolute value of its reciprocal equals (P1 - MC)/P1.

0bs

1

р1

3.63944

0.196799

```
3.64-1.5=2.14
2.14/3.64=0.5879
Own price elasticity = -1.70
Elasticity= -27.0763*(3.64/57.93) = -1.70
Absolute value of Reciprocal E is 1/|-1.7013| = 0.5878
0.5878
```